Elastic Constants of Polymer-Grafted Lipid Membranes
نویسندگان
چکیده
منابع مشابه
Elastic constants of polymer-grafted lipid membranes.
The surface expansion that is induced by the lateral pressure in the brush region of lipid membranes containing grafted polymers is deduced from the scaling and mean-field theories for the polymer brush, together with the equation of state for a lipid monolayer at the equivalence pressure with fluid lipid bilayers. Depending on the length and mole fraction of the polymer lipid, the membrane exp...
متن کاملLipid membranes with grafted polymers: physicochemical aspects.
Membranes grafted with water-soluble polymers resist protein adsorption and adhesion to cellular surfaces. Liposomes with surface-grafted polymers therefore find applications in drug delivery. The physicochemical properties of polymer-grafted lipid membranes are reviewed with mean-field and scaling theories from polymer physics. Topics covered are: mushroom-brush transitions, membrane expansion...
متن کاملPolymer Stabilized Lipid Membranes: Langmuir Monolayers
Polymer-tethered membranes combine fascinating structural, dynamic, and viscoelastic properties. Many important insights into these peculiar supramolecular systems can be obtained from studies on polymer-tethered monolayers. This chapter discusses recent experimental findings on polymer-tethered monolayers at the air–water interface. In particular, Langmuir monolayers which are comprised of pur...
متن کاملElastic curvature constants of lipid monolayers and bilayers.
Bending elasticity is an important property of lipid vesicles, non-lamellar lipid phases and biological membranes. Experimental values of the mean curvature moduli, k(c), of lipid bilayers and of the monolayer leaflets of inverted hexagonal (H(II)) phases of lipids are tabulated here for easy reference. Experimental estimates of the Gaussian curvature modulus, k (c), are also included. Consider...
متن کاملElastic moderation of intrinsically applied tension in lipid membranes.
Tension in lipid membranes is often controlled externally, by pulling on the boundary of the membrane or changing osmotic pressure across a curved membrane. But modifications of the tension can also be induced in an internal fashion, for instance as a byproduct of changing a membrane's electric potential or, as observed experimentally, by activity of membrane proteins. Here we develop a theory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2001
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(01)75863-8